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This present paper is an attempt to describe the operation of a laser by a method patterned closely
after the classical theory of dispersion. There, the electromagnetic field is treated as a classical
system interacting with a collection of classical harmonic oscillators which are at rest. In the present
case the radiation field is still treated classically, but, in accordance with the correspondence
principle, the oscillators are now virtual oscillators associated with the up-and-down transitions
in effective two-state atoms which are described quantum mechanically. The atoms carrying these
virtual oscillators are not at rest but move with different velocities. We show how the Lorentz
averaging can be performed for such systems, and derive a closed set of equations linking the average
electric field E, with the average polarization density P, and the average population inversion den-
sity m, associated with atoms moving with the velocity v. Next, we investigate the conditions for
the existence of a steady state if pumping is present, and if the electric field is represented by a
standing wave, or a travelling wave of a single frequency (single-mode case). It turns out that, not-
withstanding the nonlinear nature of the equations, the steady-state conditions give a simple
complex dispersion relation; moreover, the real and imaginary part of this dispersion relation
are equivalent to the usual heuristic expressions which specify the operating frequency in terms
of the index of refraction and cavity length, and which balance the gain against the losses. The
single-mode case is analysed in detail without any smallness assumptions for the resultant intensity.
The small-intensity case gives the usual results exhibiting the tuning dip. For high intensities the
relative depth of the dip tends to zero. At the end of the paper we discuss proposed extensions and
additional applications.
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2 N. L. BALAZS AND I. TOBIAS

In principle the theory of a laser is a chapter in dispersion theory where both the radiation
field and matter should be treated quantum mechanically. One believes that for intense
radiation fields, itis sufficient to treat the field classically, and matter quantum mechanically.

We already know from the classical theory of dispersion (Born 1933) that considerable
care must be exercised, since the final simplicity of the results arises only after one or more
judicious averaging has been performed (different averages discussed by Hoek (1939)).
Additional difficulties occur if the system dissipates, since then provision must be made in
a microscopic theory to accommodate this fact. This gives rise to additional averaging
and conceptual complications associated with the usual paraphernalia of statistical
mechanics.

We shall discuss the usual Lorentz-averaging procedure in more detail than usual for
the following reason. In any discussion of lasers one finally comes to grips with two sets of
equations, though they may appear in different disguises. One is Maxwell’s equations for
the electric field driven by the atomic dipoles; the other is the time-dependent Schrédinger
equation for the atomic dipoles in the presence of an electric field. The two electric fields
appearing in the two equations are considered to be the same, and usually it is represented
by a few Fourier modes in space and time. We are then faced with the following conceptual
predicament. If this electric field is the actual, unaveraged, microscopic electric field, as
required by Schrédinger’s equation, the electric field will be a function undergoing wild
variations in space and time in the neighbourhood of the dipoles, and the polarization
densities appearing in Maxwell’s equation will be discontinuous functions; thus neither of
them can be represented by a few Fourier modes. If, on the other hand, we believe that the
electric field is the Lorentz averaged field, why should it appear in Schrédinger’s equation?
Moreover, at the densities encountered in a laser, will a Lorentz averaging smooth out the
polarization densities sufficiently to enable one to represent the polarization density as
one or two simple Fourier modes? The simplest way to resolve these problems is to re-do
the Lorentz averaging from the beginning; this is also essential, since in the present case
the dipoles are not all at rest, nor are they all moving with the same uniform velocity, the
two cases for which the averaging process is usually derived.

1. DERIVATION OF THE BASIC EQUATIONS
(a) Nature of the model

Our system consists of a collection of atoms in a cavity, interacting with a radiation field,
and, through the radiation field, with each other. There shall be no other direct interaction,
such as collisions, between them. These atoms can move and an external mechanism
maintains a fixed velocity distribution. There is no interaction between the translational
and internal degrees of freedom; thus in a transition the atom does not suffer a recoil.
There is another external mechanism, the pumping, which can transfer energy to the atoms
raising their internal energy. This mechanism we shall only incompletely specify by telling
how many atoms are produced in each laser level on the average per unit time.

By virtue of the fact that these atoms are in a cavity transitions between certain energy
~levels of these atoms can be of much greater importance than some others. In particular
in a steady state those transitions will predominate for which there is an inversion and for
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SEMICLASSICAL DISPERSION THEORY OF LASERS 3

which the emitted or absorbed light corresponds to one of the low-loss resonance modes of
the cavity. Hence, for the calculation of the emission and the absorption of radiation we
think of the atom as a two-state system with a broadened upper state a and a broadened
lower state b, with energies £, and E, such that (E,—E,)/f ~ w,, the frequency of the
absorbed or emitted radiation. For the computation of the broadening and the population
densities of the two levels, we take into account all transitions in and out of these states. The
transitions out of the levels give rise to damping coefficients y, and y, which are a measure
of the natural line width of the levels. One might refer to this description as an ‘effective
two-state atom’ model.

In the present approximation the system is described by Maxwell’s equations for the
microscopic electromagnetic fields, driven by the microscopic polarization currents which
arise from the transitions in the atoms. The transitions, in turn, are described by the time-
dependent Schrodinger equation. These equations, however, are of tremendous complexity.
In addition, they are reversible, and their solution depends on the initial data. There are
several competing methods developed in the theory of irreversible processes to overcome
this difficulty. Instead of using any of them, we follow the time-honoured pattern of dis-
persion theory.

Let us consider classically, for the moment, oscillating dipoles embedded in the moving
atoms. The moving atoms are combined mentally into streams of a given velocity. Since
the atoms do not change their velocities, the population of each stream is permanently
fixed, and knowing the initial density distribution within each stream, one can find im-
mediately its density distribution for any later time. The dipoles are coupled to the electro-
magnetic field according to the Newtonian equations of motion. Our first task is to develop
the Lorentz averaging procedure for this collection of streaming dipoles. Once this is done
each dipole stream will give rise to a polarization density stream; the latter generates a
current, which appears as a source in Maxwell’s equations. We shall now presumably have
a closed set of equations for the Lorentz averaged fields and the polarization density of each
stream, whose solutions depend on the initial values of the Lorentz averaged fields at each
point, the initial value of the polarization density for each stream at each point, and the
initial density distribution within each stream. ,

At this stage there is still no dissipation. (The appearance of radiation damping terms in
the polarization density equation does not, of course, mean an actual damping; it is simply
part of the coupling between the polarization density and the electromagnetic field,
enabling an energy transfer from the polarization o the field.) Dissipation can now be pro-
vided by the introduction of an extraneous current which drains off energy according to
Ohm’s law. Additional dissipation and noise can be introduced similarly by a fluctuating
current or electric field (Lorentz 1916; Landau & Lifshitz 1960). These currents may be
present at the boundaries, within the system, or both. The introduction of this dissipation
has as its consequence the obliteration of the initial data dependence of the solution for
long times, except for its dependence on the initial density distribution in each stream. The
latter must survive since the motion of the atoms is decoupled from anything in the system. If
we assume theinitial density distribution to be spatially homogeneousin each stream, and the
number of atoms in each stream of a given velocity proportional to the Maxwell distribution
of velocities, the translational degrees of freedom will start and stay in thermal equilibrium.

-2
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4 N. L. BALAZS AND I. TOBIAS

If matter is to be described quantum mechanically, the scheme remains the same. Either
we use the Schrodinger equation to describe matter, or to emphasize the similarity with the
classical situation, we use the correspondence principle. In accordance with the latter, we
associate virtual oscillators with the transitions occurring between atomic states. These
oscillators obey similar equations of motion as the classical ones, however, now the density
of the oscillators associated with the transitions can vary in space and time and an ad-
ditional equation is needed to specify that. The latter equation can be interpreted either
as a balance for the individual energy level population densities, or, alternatively, as an
expression of energy balance for induced emissions.

(b) Classical situation

We shall first derive the basic equations for the classical case. Then using the correspon-
dence principle we convert the set to cover the quantum mechanical description.

Consider first one dipole in motion. The electromagnetic field is described by the two
fields e and b which has as its sources the microscopic polarization current and charge
density due to the moving dipole. We represent the dipole as given in figure 1. R(¢) is the

g

field
point

Ficure 1. Elementary dipole with the coordinates of its constituents.

radius vector of the negative charge — g, s(¢) is the radius vector of the positive charge rela-
tive to the negative one. Then the charge density at an arbitrary point r in space, outside
the dipoleis given by
p(r,t) = q[6(R+8—r)—d(R—r)] = —¢(s.9/dr) §(R—r) = —divgsd(R—r)
= —divp(r,t), (1)
where ¢s is the dipole moment, and p(r,t) = ¢sd(R—r), the microscopic polarization
density due to the dipole. Similarly, the microscopic current density can be written as

. dR ds dR
i 0 =g G+ | R+s—1) =g (GF) sR—-1)

_yq (%E;) S(R—1)—g (%I;) (s.9/or)0(R—r)

ap(r,t
— (3t )+curl (PxV); (2)
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SEMICLASSICAL DISPERSION THEORY OF LASERS 5

d/dt means of course that r is being kept fixed in the differentiation; thus, as indicated,
R (¢) is attacked by this differentiation. The first term is well known ; the second term, upon
being averaged, brings in the so-called Rontgen current. Inserting these in Maxwell’s

cquations we obtain
l1de 4mdp  4n

curlb——»—grk T curl (p x v),
1 1Jb

cur e~——c—g£, (34)

dive = —4ndivp,

divb = 0;
or curl[b——— (pxVv )]~~ +4ﬂp),

le — 1 b
curle = ———3;, (30)

div (e+4mp) = 0,
divb = 0.

This set bears a strong formal resemblance to the macroscopic Maxwell’s equations in the
sense that e, e+4mp =d; b, b— (47/c) (p X V) = h are in the same relation to each other as
the macroscopic field vectors E,D; B,H. Of course in our case the quantities d and h are
highly singular and only a space averaging makes them finite, though they remain dis-
continuous. At the moment they are a formal aid.

To close the equation we add explicitly the trajectory R(¢) and the equations of motion
for the internal motion of the dipole,

d2s ds 2 , v ,
9[(—1;2”+(w%+72)8+2ya;] =%[e (R,8)+—xb (R,t)]. (4)

0, 1s the actual frequency in the presence of damping; thus it includes the frequency shift
due to y; u is the mass of the dipole; e'[R(¢), ] and b’[R(£), {] are the microscopic electric
and magnetic fields at the point r = R(¢), excluding the field of the dipole itself, which is at
the point R. This contribution is already taken into account in the definition of # and v,
and in the explicit introduction of the radiation damping force —2yu(ds/dt) where y
represents the line width. This equation can be rewritten in terms of p(r, ) and v = dR/d¢
as

D2 D,p ,
Dt§+(wo+7)p+27 D q[ (R, )+ xb(Rt](SR r)

=%f(R,t)6(R—r),

where D, /Dt s the co-moving derivative d/di+ v. d/dr, and fis the abbreviation for the force
appearing in the square bracket. (The equivalence immediately follows if we notice that
D,/Dtis the ordinary time derivative ifit is applied to a function which is independent of r,
and gives zero if applied to functions, such as (R —r), which combine r and ¢ only in the
combination r —R(?).)
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6 N. L. BALAZS AND I. TOBIAS

If we consider many dipoles, we label the polarization density due to each and sum over
them. The summation we do in two steps. First we sum over all dipoles, which, at a given
time, have the velocity v, wherever they may be; this quantity we denote by p,(r,1).
Summing then over all velocities we obtain the total microscopic polarization

%pv(ra t) = p(r, t)'

This summation can immediately be performed on Maxwell’s equations since v does not
appear in the coeflicients, only in the functions. Thus we can take over equations (3) as
they stand, introducing the total microscopic electric and magnetic polarization densities,

Sp,(r,f) and 3PV

A similar summation cannot be immediately performed on the differential equation for
p, to give an equation for p since the operator D, /D¢ is also affected by the summation. We
can, however, perform the summation for all those dipoles which have a given velocity v.
This gives the following differential equation for p,:

Dg v DU v 2
B+ 07 P2y = TS AR, 0 (R, ), (5)
J

with R; = v. The summation on the right-hand side is over all those particles which at
time ¢ have the velocity v. There will be one such equation for each value of v. Maxwell’s
equations now describe the total field generated by all dipoles, while the polarization equa-
tions still contain reference to the individual electric fields, since the contribution coming
from a given dipole has to be always omitted in the sum. The Lorentz averaging, however,
enables us to close the set of equations. This average is defined as follows. Surround the
point r with a sphere w which has a radius, say one tenth of a wavelength in size, and take
within this volume the mean of the function to be averaged. The averaging can be approxi-
mately performed and we obtain the basic set of equations (see appendix A), Maxwell’s
equations, and

2P, D,P, ¢ v
ot G+ P2y oy :%n,xr,t) [BEro+@nP+¥xB], ()
where P=3P,(r,t) and =n, f d’r > IR;—r).
v J(Rj=v)

Capital letters refer, as usual, to Lorentz-averaged quantities. If the system is dense enough
so that many dipoles are in the Lorentz sphere, z, can be approximated by a continuous
function, and then P, and P will also be continuous. However, if the system is very dilute,
n, will be discontinuous, and so will P, and P, and only an additional averaging can provide
continuity.

(¢) Quantum situation

Assume now that the dipoles are quantum mechanical objects, and consider electric
dipole transitions. In this case the Correspondence Principle enables us to reach the final
equations with ease (Rubinowitz 1933; Wentzel 1933). Consider two atomic states ¢ and
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SEMICLASSICAL DISPERSION THEORY OF LASERS 7

b, a being the one with the larger energy. In a down-transition the energy fiw, = E,—E,
is emitted; in an up-transition the same amount of energy is absorbed. Now we cannot
make statements about the individual acts of absorption and emission, but we can only
make statistical predictions. They will be as follows. We consider a given external electric
field and an atom so massive that its transitional motion can be treated classically. This
atom is immersed many times into the external electric field e’(r,?)-at a given point
r = R. What will be the behaviour of the expectation value of the dipole moment ®? One
finds that this expectation value can be conceived as the sum of D, and D 4,,, €ach obey-
ing the following differential equations
2
SRRty = £ L e Ry,

7
d*® down ( )
dz?

where ¢2/u is given by 2p%w,/fi, ¢ being the matrix element of the dipole transition; f,,, and

— faown are the probabilities that the atom is in state  and a respectively. The y term corre-

sponds to the damping, and y itselfis the mean of the two y’s associated with the two levels.

Thus we may say that we associate virtual dipole oscillators with each transition, an up-

oscillator, and a down-oscillator, which have the same properties as the classical dipole

oscillators, except that the sign of the coupling is reversed for the down-oscillators. Let us

imagine now a large number of these virtual oscillators present at points R; as before. The

only difference is that now the label j should also tell whether the oscillator is a down or an

up oscillator. Appending this label j to fand® in (7), the situation is now the same as in the

classical case, and we may proceed precisely as before. We immediately reach the differ-
ential equations for P (r,?).

d® own
=+ ((1)0 + 4 ) @down + 27’ d fdown (R t)

DP, D,P, 2p% v
D (w7 P2y e = 200 [E(r, ) 147 P+ ¥ x B, (8)
with m, (T, 1) = ffa r) &3¢ = n, (1, 3 B) —n, (T, ¢ ).
_](R i=v) W

This is the same as the classical result, except for the appearance of
m,(r,t) =n,(r,t; b) —n,(r,t; a)

in place of n,. n,(r, t; a) is the average density of atoms which are in state ¢ at time ¢ with the
velocity v, and are in the Lorentz sphere surrounding r; m, thus represents a population
difference. Ifitis negative thereis a populationinversion at r for atoms moving with the velo-
city ». The sign has been chosen so that m positive corresponds to a preponderence of up-
transitions, so that for lasing, m shall, as we surmise, turn out to be negative. In a dilute
system m,, is small in absolute value; in fact, if we measure the volume in units of Lorentz
spheres, we shall find m hardly ever more than zero, or plus, or minus one; for denser systems
this will improve. The correction terms $7P + (v/c) x B will often be small.

If m, were held fixed by some means, we would have the same equation system as in the
classical case. However m, can change, and we must find out how. This is determined by the
balance equation for the individual energy level population densities. For the moment, let
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8 N. L. BALAZS AND I. TOBIAS

us consider the atoms at rest. Each population density will change for three reasons;
spontaneous transitions out of the state, induced transitions, and pumping. Let us consider
the upper state a: in time d¢ the change dn, in #, is given by

dP +7,Pds
fiw

0

dn, = —y,n,dt+E,,. + A, ds.

The first term represents the depletion due to spontaneous transitions into all other states;
the second term is obtained if we notice that fiw,dn, is the energy density absorbed by the
atoms (if dn,, the change in 7, due to induced transitions, is positive) and E,,. [dP +yP d¢]
is the work done per unit volume during d¢ by the actual electric field E,, on the polarization
P in induced changes, dP— (—yPdt) being the change in the polarization density due
toinduced emissions; A, is the change in z, per unit time due to pumping. For thelowerlevel 4
we get a similar equation with y, and A, appearing, except for two changes. The second
term acquires the opposite sign. It now represents a negative work done, since oz, positive
implies an energy loss for the atom. Also, there is an additional term proportional to z,d¢
which represents the population increase due to spontaneous decay out of level a. This
latter term we shall neglect, since in a steady state it only alters (in general only slightly)
the effective population inversion density. Ify, is equal to y, is equal to y, we get the following
equation for n, —n, = m, the population density difference,

dm _2E, (dP

G Tm= o, —&?+yP)+(A,,—Aa); (9)

[(8) and (9) were used for atoms at rest by Grasiuk & Oraevskij (1964)]. Multiplying (9)
by thw, we can also interpret this result as an energy balance in induced emissions. For,
if an up-transition occurs, n, changes by +1, and 7, changes by —1, hence m changes by
—2, and the energy absorbed is fw, = — (3fiw,) (—2). Thus if m changes by dm, — (3w,) dm
is the quantity of energy absorbed. During a time d¢, dm— (—ymdt) is the change in
m due to induced transitions; the last term being subtracted represents the spontaneous part.
A quantity of energy — (}#w,) (dm+ymdt) will be absorbed per unit volume, which is pro-
vided by the work done by the actual electric field in induced transitions, E,, and by
the external pumping. The former is E,,. (dP+yP d¢) ; the pumping should contribute the
amount (3#w,) (A,—A,) dt.

If the atoms move, we immediately get in the laboratory frame a set of equations, one for
each v, D.m

D¢

2 D,P
”+y(mv—m§,0)):—M)[E—{—%—ﬂP—I—%XB].(—ﬁt—”erP), (10)

where the actual electric field in the rest frame E,, = E+-$7 P acquires the additional term
(v/c) x B. Here we replaced A,— A, by an externally produced population density supply
per unit time, denoted as ym{?), for convenience.

If we consider the widths of the two levels different, we must use the n, and 7, equations
separately instead of their difference. One can also work out everything for this case follow-
ing stepwise the simpler procedure. In the final results we indicate the trivial differences.

An alternative derivation of (7) and (9) can be provided starting from quantum theory.
This is indicated in appendix B.
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SEMICLASSICAL DISPERSION THEORY OF LASERS 9

2. THE BASIC EQUATIONS

Maxwell’s equation are given as

__19(E+4qP)
curl (B—4:7TQ) = —(; —“T +TJCX',
1JB
Cur]. E = -—**(:‘ —-92‘,
divB =0,
div (B -+47P) = 47p,,,
(11)
Q-3P,x7,
P= z Pv’
d
Pex +divje = 0,
ot
jex. = (1) 20E.

The external charge p.,, and the external current j, , are responsible for the ohmic losses
inside the cavity. For future convenience we take 20/4w to denote the standard conductivity.

If we assume p,, to be zero, then, from the continuity equation, Ohm’s law, and the di-
vergence equation on E+47P, it immediately follows that the divergences of P and E are
both zero.

If we separate the fields in Maxwell’s equations we obtain

3;:}23“ 931*; ZAE = — at(z ='+curl P, ><v)
= —ing 3 O (12)
div E = 0;
33:23 ¢?AB = 4:7T(}Clll‘lz D]; , (13)
divB = 0.

The last step in (12) follows from the well-known identity for any vector field F, and velocity

field v independent of r,
Dﬂf = %“}"CUI‘I (Fxv)4vdivF,

with divF = 0.

From (12) and (13) we see that the source of the fields is the current which is generated
by stimulated and spontaneous processes. We shall restrict our interest to that part of the
electromagnetic field which arises through induced processes. We then replace the total

polarization current D,P, D,P,
z Dt bY z Dt (_va))

the last term being the current generated by spontaneous emissions. In the future we shall
denote only this portion of the electric magnetic field by E and B. The introduction of

2 Vor. 264. A.
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10 N. L. BALAZS AND I. TOBIAS

D,P/D¢+yP,into the E equation is motivated by two reasons: first, it leads to a mathemati-
cal simplification, since then, as we shall see, only this combination of P, and its derivative
plays a role in our equations; secondly, this step is numerically permitted, since we know
that in the steady-state operation of a laser, the contribution of spontaneous emission to the
E field in a given mode is negligible, except very close to threshold.

Our basic differential equation system is then given by

PE _ JE o J(s<D,P,
9t2 -+ 20 3 CAE——_KL’”_&Z(E Di +7’P1)):
divE = 0; (14)
B
¢ 2AB = 47¢curl (§ ”-I— P) (15)
divB = 0;
D2P D,P
ﬂt2”—|—27f ”+(wo—|—?’2)P = (2@2 ﬁo)m E, (16)
D,P
m, () = v
D7 7 (m—m?) = ﬁ E. ( Di +7'P")' "

(In (16) and (17) we have omitted in the force term both the polarization correction
and the Lorentz force. The former is justifiable in moderately dilute gases. One would be
tempted to neglect the Lorentz force arguing that it contains the small factor »/c. However,
the Doppler shift, which we shall continue to include, contains the same small parameter.
Notwithstanding, the omission of the Lorentz force is reasonable. In the results one can find
that the two effects enter in a different fashion. The Doppler shift has a major effect on the
resonances, so it has to be retained. On the other hand, the omission of the Lorentz force
makes one miscompute the energy density of the electric field responsible for induced
emissions, occurring in a moving atom, by replacing the energy density as seen by the moving
atom with that seen by the same atom at the same place, but at rest.)

Given m{?(r,t), boundary conditions, and initial data we have a well-defined initial
value problem. If we restrict our interest to stationary solutions, we can dispense with the
initial data, since the assumed losses will obliterate them anyway. m{?’ is a stochastic function
of r and ¢; we shall assume its mean to be independent of these variables and Maxwellian
in v. If we disregard any correlation between m, and the other quantities we can replace
m, by its stochastic mean in the differential equations. We shall do this, and use the same
symbol, m,, for this mean.

For the rest of the paper we shall consider a one-dimensional problem and envisage a
long closed cavity of length L. To insure that the problem is properly one-dimensional we
shall average all functions which depend on the position over planes perpendicular to the
axis of the cavity. This averaging, coupled with the already performed Lorentz averaging
over small spheres, is the same as a single Lorentz averaging over thin sections, perpendicu-
lar to the axis of the cavity, and of the width of a Lorentz sphere. This is not only useful, but
also necessary. If the density of the active atoms is very dilute, as it may be in gaseous lasers,
the averaging over a Lorentz sphere will not insure the continuity of the P and m fields. One
is then prohibited from representing these functions, and the E field, as a combination of
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SEMICLASSICAL DISPERSION THEORY OF LASERS 11

a few spatial Fourier modes. Let us take m to be of the order of magnitude of the density,
about 108/cm?. For red light the volume of a Lorentz sphere is of the order of 10~16/cm3. Thus
one must sample 10% Lorentz spheres to find one of them occupied. In fact, to get on the
average, the meagre occupancy of a single atom per Lorentz sphere (which is far from being
sufficient for continuity), one would need at least a density of 10'6/cm3. This is above the
usual densities encountered in gaseous lasers. On the other hand, for a cavity a few milli-
metres in diameter we have about 10° Lorentz spheres per cross-section, which gives 107 /cm3
for the density at which one finds one atom per averaging volume.

The boundary conditions are as follows. We simulate the boundary losses by the ohmic
dissipation inside the cavity, and hence assume E to vanish at the boundaries and outside.
(This will certainly give an improper amplitude dependence of the E field inside the cavity,
but simplifies the problem. At some increase of complication one is able to discuss the case
ofno bulk loss but surface losses. The solution then exhibits the expected amplitude variation
of the field.) The quantities m, and P, should vanish on and outside the boundaries.

3. THE SOLUTION FOR SINGLE-MODE OPERATION
(a) General properties of the solution

We do not intend to solve the complete initial value problem. Rather, we seek the con-
ditions which have to be satisfied for a stationary single-mode operation. By single mode we
mean that the electric field can be described by one standing wave with a wave vector of
magnitude k = nm/L, n being a large positive integer (k thus is always positive), and with a
frequency w(k) which is to be determined. Each P, and E are parallel to each other, and
perpendicular to the axis of the cavity, and will be functions of x and ¢, the x axis being along
the cavity. The vector v has only one non-vanishing component, v,, which we shall denote
by v. Thus v carries a sign. If positive, the motion is along the positive x direction. Hence-
forth we omit all vector signs from the equations.

We assume E to be of the form &sin kx cos wt, with  and & unknown. Our problem is the
following. Given k£ and m©® = > m{®, find those values of &, (or &2 since the sign of & does

v

not matter), and w for which such a solution is possible. Thus we seek two functions &2
(m©, k) and w(m®, k) or alternatively two other functions w(62, k) and &2 (m©®, ). The first
function corresponds to a dispersion relation which is intensity dependent, the second gives
the intensity as a function of the frequency and the pumping. The usual dispersion theory
arises as a limit for €2 tending to zero,in which case the second equation becomesinoperative,
and the first gives the usual intensity—independent dispersion relation.

The modus operand; is as follows. We insert the assumed form of E into the P, and m,
equations and disregard temporarily the £ equation. There are as many pairs of such
equations as permitted v values, a pair for a given v value decoupled from all other pairs.
Let us solve each pair, and find P,, hence its sum, hence the source for E. Returning to the
E equation we determine the conditions that the obtained source should generate an £ of
the assumed form. These conditions will be our goal. In practice some of these steps may be
obviated, depending on the particular nature of the functions involved.

To proceed rapidly we do now two things. First, we transform the P, equations into
complex first-order differential equations; then we list a number of useful properties of the

2-2
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12 N. L. BALAZS AND I. TOBIAS

solutions of these equations. Introduce the function J, = (D,/D¢+7) P,+iw,P,, which,
as it may be readily verified from (16), satisfies the differential equation

2
Dol iy +yd, = 2%

Di m, E. (18)

ﬁ v

The real part of J,,Jy,, serves as the forcing function for both the m, equation and the E
equation. Thus, instead of P,, it is sufficient to determine J,. For each v we get a pair of

first-order differential equations, (18) and
D, m 2
—v" ) — 2
Dt +7(mv mv ) k(l)o EJRU' (19)
What are the general properties of the stationary solutions defined by these equations
for the above £? We show in appendix G that: (a) the solutions are unique if they exist
at all; (b) m2 <m,m?, where the bar denotes a space average and time average; (c)
m,m® > 0; (d) m,(x,t) has a term independent of #, and negligibly small terms oscil-
lating with frequences 2v, 4w, 6w, etc. It thus may be taken to be a constant in time.
(e) m,(x) =m_,(—=x); (f) m,(x) is periodic with the period of E2,n/k. Thus m,(x) may be
represented by a Fourier series

m,(x) = m,+ § a,(v) sin 2nkx+b,(v) cos 2nkx.

n=1

(g) J has the same x and ¢ dependence as mF, the source term in the J equation. Thus, it
oscillates primarily with the frequency w and, at a given time, it may be represented by the
series

J, = 3 d(v)sin (204 1) kx+ b, (v) cos (2n+ 1) kx.
n=0

Both the time and space averages of J, are zero.

(b) Dispersion relations

The formal steady-state solutions of the J and m equations are

2 o
Jro (%, ) = 2@hw0f dre " cosw,7 E(x—uvr, t—7) m,(x —v7),
o (20)
m,(x) = m;‘”——h—w~f dre vE(x—uvr,t—71)Jy, (x—v7,t—7),
0Jo

in which the independence of m, on the time, as discussed above, has been noted. We now

explicitly make use of the periodic nature of m,(x), property ( f), by expressing it as a Fourier

series

a,(v) sin 2nkx+ b, (v) cos 2nkx, (21)

m,(x) = m,+
. 1

ﬁ[v]s

and go about computing the source in the £ equation. It follows from the symmetry property

of m,, property (¢) above, thatm =m_,, a,(v) = —a,(—v), and b,(v) = b,(—v). Thus each

term in J, can be identified at once as being either symmetric, or antisymmetric in v. The

antisymmetric terms make no contribution to Y} J,, and can be neglected at this point.
N
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SEMICLASSICAL DISPERSION THEORY OF LASERS 13

Similarly, in the 7 integration, terms arise which are smaller than the others by a factor
y/w. These too may be profitably neglected. Then, 3 J, is of the form

2
> T, (%,8) = @ﬁw%@ sinkx x > (m,—%b,(v)) L(w—kv) [y cos wt+ (0 —wy— kv) sin wt]

+%a,(v) [L(w+kv) (0—wy+kv) — L(w—kv) (0 —wy—kv)] cos wt
—%a,(v) [L(w+kv) — L(0—kv)] y sin 0t 4 terms with x dependence
of the form exp (inkx), n being any odd integer except -1

(22)

(Property (g) above)
where L(w) = [(w—wy)2+7y?]7L
Because > Jp, has only an exp {4-iwt} time dependence, these latter terms as sources in

the wave equation make a negligibly small change in the assumed form for E(x, t). We there-
fore do not retain them.

It is clear from (22) that a detailed knowledge of m,(x) is not needed to derive the disper-
sion relations, just a knowledge of m,, a,(v), and b,(v). But equations (20) do not permit a
determination of all of the Fourier coefficients. Further simplifications are still possible,
however.

Rewrite (20) as

2 po @
mvzm,gw—%%f dT'f drexp{—y(7+71")}cosw,T
0 0
XE(x—vr', t—1)Elx—o(r+7"),t— (747" )m,[x—v(r4+7")]. (23)

Using (21) for m,, we carry out the indicated integration over 7 and 7', and equate the x-
independent terms. One obtains

@2&2
4ﬁ2,},2

(m,—%b,(v)) Y[ L(0+kv) + L(o—kv)]
+30,(v) Y[ (0 =0y +kv) L{o+kv) + (0—0y—kv) L{w—kv) ]}, (24)

7 — (0)
m, = m," —

from which it follows that the quantity m,—15,(v), appearing in (22), is

_ m®—1b,(v) —%a,(v) By [(0—wy+kv) L(w+kv) — (0 —wy— kv) L(w—kv)]
- 1+ By?[L(w+kv) + L(w—kv)] ’
(25)

where B = 92£?/4%%y? is a normalized intensity parameter.
We now show that the 4, and 4, terms in the numerator of (25) can be neglected compared
to m{®. First we know that

5 2 GA0)+B (1) = mi—(m,)? > 0. (26)

It follows from property (4) that

3 awram] <m0 (m)T (@)

m®


http://rsta.royalsocietypublishing.org/

. |
/I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

14 N. L. BALAZS AND I. TOBIAS

Property (¢) tells us thatm,/m® > 0. The maximum value of ther.h.s. of (27) isthus 0-35 m{?,
occurring when m [m® = 1. We are able to conclude from this that %a,(v) and %6,(v) are
each small compared to m{®.

To go further, we examine the exact solution of (23) for the two cases where an analytical
solution is possible, kv > y, and kv = 0. In the first case, kv > 7, all of the x-dependent
terms on the r.h.s. of (23) are zero. We obtain as the solution, therefore, from (24) and (25)

m®
1+ By?[L(w+kv) + L(w—kv)]"
Here a,(v) = 0 and 4,(v) = 0 so that neglecting the second and third terms in the numer-
ator of (25) is certainly justified. When kv = 0, (23) yields

m,=m,=

(28)

m®

mo() = 1+4By2L(w)sin?kx’
Now, a,(0) = 0 and 34,(0) = K[1+2K+ (K+1) (1+2K)¥] 1m0,
where K = 2By?|[(0—w,)?+7?].

It may be readily verified that 44,(0) can never exceed 0-17m{. For this case too, therefore,
the approximation is justified. If this be so when kv = 0, we feel intuitively that the situation
should be even more favourable for all non-zero velocities: the movement of the atoms
has the effect of obliterating the x dependence of the inversion density. In appendix G
we show that for a simplified model [a}(v) +b%(v)] (m,)~2 is a monotonically decreasing
function of v, so that the equations support, in this instance, our intuition. From the same
simplified model we also find that the Fourier coeflicients are decreasing functions of the
intensity parameter B for large values of B, so that even when B > 1, the third term may still
be neglected compared to the first. The omission of the term involving 4,(v) both in (22)
and in (25) is further indicated by the fact that a,(v) and the functions it multiplies are
antisymmetric in v. Therefore in the integration over all values of v these terms make a
relatively small contribution in the range |kv| < y. We have already seen in (28) that the
a,(v) terms also make very little contribution in the range |kv| > y.
For all of the above reasons we finally rewrite (22) as

(29)

(30)

P, F . m? L(w—kv) [y cos wt+ (0 —wy— kv) sin ot ]
2 () = sinkx 2 1+ B[ L{o+ ko) +L{o—ko)] :

We now substitute (30) into the £ equation, and replace the sum over all » by an integra-
tion to obtain
& sinkx [ (¢? k2 — w?) cos wt— 20w sin f]

o Amp%ym O doexp {—v?2/u?} L(w—kv) [y sin ot — (0 —w,— kv) cos wt]
=&sinkx = ] 1 By?[L {0+ ko) + L(o—Fo)] - (31)

Here we have also introduced the assumed Maxwellian velocity distribution,

m® = m exp { —v?/u2} dv/un?,
u being the thermal velocity, and m© the total population inversion density; i.e.

mo =3 m®,
v
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SEMICLASSICAL DISPERSION THEORY OF LASERS 15

The solutions will be self-consistent if (31) reduces to an identity. For this to occur the
coefficients of the x and ¢ dependent terms must balance. This condition for self-consistency
may then be summarized by the two dispersion relations

ck—w = 2n0ym®a, (£, B, ¢),
o = 2mw,mQay(§, B, €), (32)

where @, and a, are the real and imaginary parts, respectively, of a three-parameter com-
plex integral

2 o2 i dy exp {—y?% ,
with £ = (w—uw,)[ku, ¢=ylku.

If the restriction y, = y, were not made, it may be easily verified that the only changes
in the final expressions would be B = 02%6?%/4h%y% — p262/4hy,y, and ¢ = ylku — vy, [ku
where y, is the arithmetic mean of y, and y,.

It is evident that the integral ¢ can be considered the complex polarizability of the active
medium. With this in mind, each dispersion relation can be cast into a form in which its
physical meaning is apparent. We rewrite the first dispersion relation as

v = ck—2mwymO, (£, B, ¢€). (34)
Since wy/ck =~ 1, and 2mm©a, (£, B, ¢) < 1, this becomes
w = ck[n, = ¢Nm|n,L (N = positiveinteger), (35)

where n, = 14 2mmOq, (§, B, ¢) can be thought of as the real part of the index of refraction.
In this form the first dispersion relation is just the familiar steady-state frequency deter-

mining condition.
Similarly, the second dispersion relation written in terms of the imaginary part of the
refractiveindex n; = 2mmOa, (&, B, ¢
i 2(§> ] ) 0'/(00 =n, (36)

is clearly a statement of the fact that in a steady state the gain is equal to the loss.

4. STEADY-STATE OPERATING CONDITIONS FOR STANDING WAVE LASERS

The dispersion relations, (32), together with the definition of the polarizability «, (33),
allow one in principle to determine the steady-state intensity B and mode frequency w
given a knowledge of ¢, m©, ¢k and the parameters characterizing the transition. A number
of well-known results are immediately obvious from these expressions. For one, «, is an odd
function of { and consequently so is ¢k —w. In particular, when w = v, » = ck. Theimaginary
part of &, a,, is an even function of . In addition, a, is always negative. In order that the
second dispersion relation be satisfied, therefore, m® must also be negative.

In appendix D we outline the manner in which « may be decomposed into a sum of plasma
dispersion integrals, whose values are tabulated (Fried & Conte 1961). We also have
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16 N. L. BALAZS AND I. TOBIAS

carried out a numerical evaluation of the polarizability. However for certain ranges of its
three parameters ¢, B and ¢, the integral o assumes especially simple forms. In this section
we discuss these cases.

(1) B = 0; threshold operation

In this case
= s [ —in 2 [w(E+ie)), (37)

I
where w(z) = %f dt (z—1)"lexp {—12}.
The function w(z) is related to the complex error function (Abramowitz & Stegun 1964)

and to the plasma dispersion function (Fried & Conte 1961).
The first dispersion relation gives

21wy m® g2

Py nJ [w(E+ie)]. (38)

k—w=—
When § is positive # [w(£+1¢) ] is also positive and vice versa. Since m© is negative, we obtain
the expected result that at threshold » always lies between ¢k and w,. The mode is said to be
‘pulled’ toward line centre. In the limit of extreme Doppler broadening, ¢ < 1, (38)
becomes

0) 92 £
th— — — HTOME" exp{—~§2}f dtexp {#2}.
fiku 0
With B = 0 the second dispersion relation determines the minimum value of |m®|,
mO(E, €), necessary to sustain steady-state laser oscillation for any value of §. This number
itselfis a minimum when £ = 0. From (32) and (37) we find

okufi
2mtp 2w, exp {2} erfc (¢)

HO(0,¢) = (39)

In what follows it will often be a convenient to express results in terms of the ratio
N = Im(o)l/yfl(o)((), 6‘).

This quantity is called the relative excitation. In the limit of complete Doppler broadening,
(39) becomes

kufi
#0(0,0) = — 40
( ’ ) ot @20)0 5 ( )
and, at the other extreme, in the limit of complete homogeneous broadening
. oyl
(0) =
79(0,00) Smpo, (41)
(2) w—w,= 0; mode at line centre
In this case @, = 0, and the imaginary part of a is given by
% 2
gy =—"F exp{[}erfc (I') (1+2B)"3, (42)

2T hku
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SEMICLASSICAL DISPERSION THEORY OF LASERS 17

where kul’ = y(14-2B)? plays the role of an effective homogeneous line width. The second

dispersion relation determines the mode intensity B for a given value of the population

inversion density m©® and yields as the connexion between B and the relative excitation, 7,
yexp {—2Be?} erfc (¢)

or F(T) = 1F(e), (44)
where F(y) = yelegt:{c_( yy;}
08
2

04

1 1 : L a
0 1 2

I'exp {— I'}jerfc T

Ficure 2. The quantity I'? = ¢2(1 + 2B) plotted against
F(T') = I" exp {— I'"}}/erfc(T").

In figure 2 we show the result of plotting I'? against F(I'). From this graph one can deter-
mine B(y) for any value of ¢. All that is necessary is that the coordinates be relabelled:
B = 1[(I"?/e?) —1], 5 = F(I")/F(¢). Then that part of the curve lying in the range B > 0,
n =1 is the required function. Since the relabelling alters only the scales, for qualitative
purposes one can think of the curve in figure 2 immediately as a curve of B against 7.

If the line is completely homogeneously broadened, ¢ > 1, the mode intensity varies
linearly with the relative excitation, at all levels of excitation

B =}(n—1). (45)
On the other hand, when ¢(1+2B)* < 1, (43) gives
B=1(p—1). (46)

With increasing excitation the effective homogeneous line width increases, and the de-
pendence of B on 7 gradually changes from quadratic to linear.

The experimental results of Smith are in excellent agreement with the predictions of (43),
(Smith 1966).

3 Vou. 264. A.
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18 N. L. BALAZS AND I. TOBIAS

(3) |w—w,| > y; mode frequency greater than a natural line width from line centre

- Mathematically, this means that the term (y+§)2+y%can be omitted in the denominator
of (33). Physically, this simplification arises when | —w,| > 7, because the atoms in the velo-
city ranges making the greatest contribution to the integral, |kv| & |0 —uw,|, ‘see’ only one

travelling wave component of the standing wave in the cavity. (See discussion in §6.)
Then

0= =T culgvie(L+ B, (47)
and oy = "ﬁf (1--B)~} 2 w[E +ie(1+ B)}]. (48)
The effective homogeneous line width here is y(1 -+ B)*. If this quantity is small compared
to ku, then 20 £
o = —pr-exp{—&% fo dtexp {*}, (49)
71%@2 1 '
and ty=~"5 exp(— £} (14 B) Y, (50)
and the dispersion relations give
(0),
ck—o = 4:7m;2ka)0§) exp{— 52}f dtexp {t?}, (51)
and B = p?exp{—2{%}—1. (52)

The frequency of oscillation here too, is ‘ pulled’ toward line centre.

(4) B <1, ¢ < 1; operation close to threshold, completely inhomogeneously broadened line

The restriction on the size of B allows the polarizability to be cast into the form

/ _ f*‘” dyexp{—y% _p. (" dyexpi—y
hmtku

2} 1
cw y—E+ie ) T y—Etie [(y+£)2+62+(y—§)+€2]’ %)

and, because of the further stipulation about ¢, all of the integrations can be performed
analytically. The result is, after small terms are neglected,

= ent-n [aeair s AR,
% 1 1p|.
2/ﬁ7r5‘/c —mexp{—§? }l:l [(0—wg) [y 21 EB:I ; (55)
and ck—w = 21 wym©Qa, (56)

B=2 [1+[(a)—a)(3/7]2~|— l:l_l (I—p~texp{£%). (57)

This is a case considered in detail by Lamb (1964 4), Equation (56) agrees with the cor-
responding one in his paper. In (54) the first term gives rise to frequency ‘pulling’ and the
second to power dependent frequency ‘pushing’. The expression for the mode intensity
derived here, (57), shows the power tuning dip behaviour predicted by Lamb for certain
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values of 7 in his equation (96). The two equations do differ in that Lamb’s intensity is less
by a factor exp {—£?}, a difference which becomes significant for |0 —w,| = ku. This falls
within the range of validity of (52). For excitation close to threshold, (57) becomes identical
to (52). Equation (57) is also consistent with (46) when » = w,. Thus the two approxima-
tions valid for all B in different frequency ranges overlap correctly with (57) which is limited
to small B for any w.

(5) B>»1and B> 0% ; operation high above threshold
2, = P2O=90) [ opnevn (53 exfe (5)] (58)
! 2fimty2B ’
where b= (£2+¢2)}
__
and %= opy B’ (59)

Itis of interest to note that a, is, in this case, independent of w —w,, and as a result, the inten-
sity B is also independent of this quantity. These expressions predict that the Lamb-dip
becomes flatter in the region of line centre at high excitation. Uehara & Shimoda (1965)
have found by carrying out Lamb’s work to one higher order that the Lamb-dip becomes
considerably shallower.

(6) €> 1; homogeneously broadened line

B (@—wo)[y
"7 Ty [o—w) 2B (60)
__# 1
= iy [o—o) PP 2BH T (81)
From the dispersion relations we obtain the well-known results
ch—0 = (o]y) (0—0y), (62)
or 0 = (0+y)7" (0wo+yck); (63)
i.e. the mode frequency is always ‘pulled’ toward o, and, in addition, is independent of
excitation.
Also
1 ck—wg)?
By[i-1-(525) ) (64)

which of course, reduces to (45) when ¢k = w,.

5. PROPERTIES OF THE POPULATION INVERSION DENSITY

Our understanding will be strengthened if we analyse somewhat further the properties
ofm,and the physical causes behind them. For the v = 0stream, the equations can be solved,
and one obtains for m,, aside from small time-dependent terms,
o
-~ 1+4By2L(0) sin?kx’

my (65)

3-2
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20 N. L. BALAZS AND I. TOBIAS

The result has intuitive appeal, for in this case we expect that the intensity acts locally on
m as a sink. In (65) the imprint of the assumed standing wave is clearly evident in the x
dependence. Figure 3 shows m,/m{® against x for three values of the coeflicient of sin?kx
in (65),0-1,1-0and 10.

Similarly, the equations can be handled when |£v| > y. This is the case in which the atoms
considered travel in their lifetime through many wavclengths. Here we expect that the
intensity acts as a sink, not locally, but in some average sense, and consequently, that m,
is x independent. Again, the equations support our expectations, the solution being

m©

™ = I By Lo+ ko) + Llo— k)]’

(66)

1-0

my[m

FiGUrE 3. my/m{® = (1+ R sin? kx)~! as a function of kx for three values of R:
(1) R = 010, (2) R = 1-0 and (3) R = 10.

We see that the intensity-dependent term in the denominator is just the space average of
thatin (65). Also we note that both terms in the square brackets in the denominators cannot
be large simultaneously. There is a strong similarity betwecn this case and the travelling
wave case. If the E field is a travelling wave, m,, is x independent for all » and of the form

(see §6). m(©
M= BpRL(o—Fr)" (67)
Y
This similarity is not merely a concidence but has a simple physical meaning. In the
presence of a standing wave the atoms in the strcams for which |£v| > y can intcract strongly
with at most one of the two travelling wave components of the standing wave.
In the intermediate velocity region, we are unable to write an analytical expression
for m,. Certain features of the solution are evident, however. As the velocity of the stream
increascs, the ¥ dependence of m,, is gradually washed out. Also the appearance of the sine

terms ©
’ > a,(v) sin 2nkx,

n=1
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when kv = 0, in the Fourier expansion of m, is indicative of the fact that m,(x) = m_,(x),
and that, m () is no longer symmetric in the interval between two nodes or two antinodes
of E. We surmise that accompanying the washout of the x dependence there is a shift of
the m,(x) pattern in the direction of the streaming.

If y/ku < 1 and the laser mode frequency is many natural line widths removed from line
centre, i.e. |0 —w,| > 7, we know m, against v for all v since in the range |kv| < y the double
integral on the r.h.s. of (23) is small compared to m{*. Consequently in this range m, = m{
and m, as a function of v gives the familiar ‘hole-burning’ picture (Bennett 19624, b;
Lamb 1964 a).

6. THE TRAVELLING WAVE LASER

The previous considerations can immediately be adopted to the case when the electric
field corresponds to a travelling wave. Indeed, the analysis is much simpler!

We consider again the pair of equations (18) and (19) for m, and J, but envisage an E
field which corresponds to a travelling wave

E(x,t) = 27%¢ sin (0t —kx)
= b(x) exp {iwt}+c.c., (68)
where b(x) = —}i2 ¥¢exp {—ikx}.

Let us transform now to the new variable pair y and ¢, in place of x and ¢, where x = y+vt.
(This corresponds to going into a moving frame of reference, which moves with the same
velocity as that of the stream.) J,, and m,, and E as functions of y and £ shall be denoted J,,
m,, and E, i.e. J (y+ot,t) = J,(y,t), etc. E can be written as before, with 5 the same func-
tion of y as it was of x, and with o replaced by &’ = w— kv, the Doppler-shifted frequency.

We introduce finally two new functions j, and &, by J, = bj,exp {io't}+ b*k, exp { —iw't}.
This results in the differential equations

J .o N

;3];) = ”"'}’]v"i‘l((‘)O_w )]v—l—mw

ok, L

o = —vyk,+i(w,+ ") k,+1,, (69)
My it —m®) — [0 exp 21}, + %)+ c.c.]

—[(b*2exp{—2i0't} k,+ |b|%k,) +c.c.].

(For simplicity, in this section the units are such that 2p%w,/f and 3fiw, are both unity.)

We notice immediately the following. There is no explicit time dependence in the co-
efficients of the j, and &, equations; j, will contain a denominator (' —w,) —7y, whose
absolute value can be small, while &, will not contain such a small denominator. Thus £,
can be neglected compared to j,. The %, equation contains terms which are fast oscillating
with the frequency 20, and terms which do not contain an explicit time dependence. Accord-
ing to the standard methods developed by Bogoliubov & Mitropolsky (1961), we obtain
the zero order approximation by omitting the fast oscillating terms altogether and solving
the resulting equations. This set has a time-independent solution. The so resulting 7, is
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y independent as well, thus, it is equal to m, itself. This gives (67), the same expression for
m, as we would obtain by omitting one of the v dependent terms from the denominator of
the standing wave solution. Now we can scale out the field dependence of the complex
polarizability by introducing an intensity-dependent line width I' = y(1+B)* in place of
the original one, y. In terms of these variables the stationary conditions are the same for all
intensities, and hence are the same as at threshold. [For an amplifying medium this result is
obtained by Close (1967).]

We may add here that one can also pursue the standing wave case in the same fashion,
going to the y, ¢ frame and analysing each pair of equations. In this case, however, the
following difference arises. A standing wave contains two plane waves travelling in the
opposite directions. Hence, now we obtain two new primed frequencies

W] = w—kv, w,= w-+k.

Their difference 2kv, also appears. As long as this difference frequency is large compared
to ¥ nothing is altered, and we can proceed as for the travelling wave case. However, when
2kv is of the same order of magnitude as y, there are no fast oscillating terms left and thus for
those streams such that 2kv < y Bogoliubov’s method is not applicable any more. Trans-
forming these equations to the x, ¢ frame, we find that this slow ¢ variation gives rise only to
an x dependence of m,. This then constitutes an alternative proof that m, is indeed primarily
time independent, with very small fast-oscillating terms of frequency 2w, etc.

7. A SIMPLIFIED DERIVATION

Our analysis has suggested that to a good approximation only the #- and x-independent
part of m, will finally contribute to the actual source of the £ field in alaser.} If we are willing
to accept this we can get to the final results very quickly.

Let us consider (19) with the first of (20) substituted into its r.h.s. We seek that part of m,
which is independent of ¥ and ¢ Thus we consider m, a constant and average the equation
over ¢ and x; the resulting equation can immediately be solved for the constant part of
m,, and gives

my = m || 1+ (a9%i%) [ drexp {=yr}cos (097) C,(1) |

where C, (1) =E(x,t) E(x—vr,t—71)
is the correlation function of the electric field as seen by a particle moving with velocity v
through the electromagnetic field.

Evaluating this correlation function for a standing wave we obtain immediately the result
of §3. This short cut is remarkable for several reasons. First, the equation resulting in this
way from (23) is the same that one would obtain from the standard rate equations involving
the Einstein coefficients. Thus the use of rate equations implies an averaging of this
kind (Gordon, White & Rigden 1963). Secondly, it suggests that a possible theory could be

1 The unexpected feature here is the minor role played by the x dependence of m,; the ¢ independence
is based on deeper and more general reasons. The m, equation expresses an energy balance in induced emis-
sions. It is well known that for this case a proper energy balance has only been satisfied in the average. In
the classical situation this is achieved by averaging the work done by the radiation damping force over
several periods; in the quantum mechanical case, it follows from the fact that the commonly used Wigner—
Weisskopf approximation is valid only for times large compared to the characteristic period.
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developed where only the different correlation functions should appear. Thirdly, it is par-
ticularly useful if we intend to include noise in our problem. If this is our intention, we notice
that this can be immediately accomplished by decomposing the £ field formally into two
parts, the noisy part and the rest. Since the two are uncorrelated we obtain the final result
immediately by including also the correlation function of the electromagnetic field due to
noise (e.g. if thermal radiation of a given temperature would also be present in the laser,
we simply add to the correlation function of the electric field generated by the laser, the
correlation function of the thermal radiation, and proceed as before). Fourthly, if we desire
to include the quantum properties of the electromagnetic field, we must alter this correla-
tion function, which is bilinear in the electric field, according to Klein’s rule (Pauli 1933).
We do not imply that using this shortcut one can avoid the more detailed analysis, but simply
argue that it provides one with a powerful tool to derive quickly heuristic results which
may be correct, and probably are.

8. COMPARISON AND OUTLOOK

Let us compare our results with those obtained by Lamb (1964.4). As we have indicated,
the fundamental equations are the same in both cases although they appear in rather
different forms. Ours is a system of partial differential equations, for £, P,, and m,. Lamb’s
equations on the other hand, are ordinary differential equations for density matrix elements
describing the state of the individual two-state atoms. These equations give essentially the
characteristics of our partial differential equations for P, and m,. Thus, his work can beinter-
preted as the construction of the solutions for the same set of partial differential equations
with the method of characteristics. He does this by expanding the characteristic differential
equations in terms of a small parameter, the normalized intensity. We, on the other hand,
chose to deal with the partial differential equations themselves without introducing an
expansion. This turns out to be quite straightforward for the single-mode case, and we hope
that it will be also tractable for the multimode case.

We find that Lamb’s first-order and third-order results agree with those obtained here,
when the latter are expanded to third order. A fifth-order approximation following Lamb’s
method has been obtained by Uehara & Shimoda (1965). These various results are com-
pared in figure 4 for the case w = w;, ¢ < 1. From this graph we see that for very small in-
tensities all three results coincide as they should. We also notice that the third-order results
deviate less from ours for a larger range of intensities than the fifth-order approximation
which already explodes for B = 0-25. On the other hand the fifth-order curve provides a
better fit for very small intensities. From this we surmise that the range of validity of the
expansion decreases as one continues the iteration. Lamb also compares hisiterative solution
with results he obtains heuristically. These heuristic results coincide with ours. Hence one
may consider our present work as to provide the theoretical justification for the correctness
of the heuristic results.

As far as extensions are concerned there are two directions to discuss: () What additional
problems can be solved by the present equations? () How can the present equation system
and method be improved? (a) The present differential equation system specifies an initial
value problem. We notice that there are several different time scales in the problem
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24 ' N. L. BALAZS AND I. TOBIAS

corresponding to the different frequencies, some of which are large and some of which are
small. This suggests strongly that one should subject the differential equations to an asymp-
totic analysis exploiting the disparities of the time scales, instead of using the smallness of the
perturbation as a parameter (Frieman 1963 ; Sandri 1963). We feel that either the present
method, in which we seek only the stationary solutions, or the suggested multiple time-scale
expansion will enable us to solve the multimode problem. The present method is already
sufficient to treat the single-mode problem with applied external magnetic field. (4) The
present equation system can be extended to include collisions using the Boltzmann equa-
tion to describe the translational motion of the dipoles. One can treat noise and fluctuations
by either introducing fictitious currents as sources, according to the method of Lorentz
(1916), or by introducing the correlation functions of the electromagnetic field generated
by these sources as indicated briefly in §7.

0-4p-

0 | ] ! 1 1
1 1:2 14 16 18 2

]

Ficure 4. The intensity B as a function of the relative excitation 7 near threshold v = o,
and ¢ € 1. Curve 1, fifth-order results; curve 2, present results; curve 3, third-order results.
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Company for their encouragement, hospitality and support, and to Dr H. H. Stroke for
his assistance in the preparation of the manuscript. One of the authors (N. L. B.) also thanks
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APPENDIX A. LORENTZ AVERAGING

We integrate (5) within a small sphere of volume w centred around the point r, and
divide the result by w. The Lh.s. gives immediately the L.h.s. of (6). The r.h.s. gives

? f;(R;, 1) [w,

where the sum is extended over all those particles which have the velocity v, and are located
within this sphere. Suppose there are / such particles inside, labelled 1, 2, ..., /, the rest being
outside. We now compute each term in this sum

iR, ) = 3 LR+ 3 £,(R,0).

j inside « outside
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According to the definition of f,, e, is omitted. The first sum refers to particles inside the
sphere, with any velocity, the second sum to those outside, having any velocity. If the
particles are isotropically distributed inside, the first sum will give zero. We now compare

the second sum with
3 3
Ry = 3 [ Cremn+ 3 [ Trers,

jinside J Ry W o outside J By W
where wis centred on R,. In the first sum the sources are inside w. There the integration over
e; will range over the interior and the exterior of the dipoles; the contribution to the integral
coming from the exterior part is zero because of the symmetry of the electric field of the dipole.
The integration over the interior of the dipole j gives (with d; = ¢s;), —(d;/a’) gma3,
if we consider the dipole homogeneous inside and having a radius a. (Actually this is true
even more generally.) Upon dividing with w and performing the summation the first term
contributes the amount —&mn(R,,¢)d. In the second term we notice that the sources lie
outside w and thus we can approximate e,(r,t) by e,(R,,?), its value at the centre of the

Lorentz sphere. This gives for the second term Y e, (R}, ¢) where the summation refers
o outside

to the exterior particles. By comparison, we find that
fl(]‘ll: t) = z eac(Rl,t)

a outside
= &R, 1)+ (5m) P(Ry, £)
= E(R,,8)+(5m) P(R,; ),
where the last step follows from the definition of

p(r,t) = quSj(t) I(R;—r);
thus, P(Ry;t) = f P(r—’;)djf
= (R, t)d.

Observe that we already have assumed that e,(r,t) varies slowly if r is in w; but then
f,(R,,?)is thesame asf,(R,, t), etc., and we finally find
f.(R,,¢
o2 Y (0, 0) [B(r,0) + 4P (x, )],
Rj=v w
APPENDIX B. THE DIPOLE MOMENT AND POPULATION DENSITY EQUATIONS
DERIVED FROM QUANTUM THEORY

Instead of the Correspondence Principle we can derive our equations following standard
techniques. To accept this it is sufficient to derive (7) and (9) ; the first expresses the equation
of motion of the expectation value of the dipole moment of a moving atom in the rest
frame of the atom ; the second gives the equation of motion for the difference of the proba-
bilities that a moving atom will be in the lower or upper energy states given in the rest
frame of the moving atom. This can be obtained immediately as follows. Locate the atom
at the origin of its rest frame. In the rest frame express the state of the atom by the density

matrix
,0 — ( aa pab) .
PE Pus

VoL. 264. A.
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The components obey the following diffcrential equations
Pap = —109P0p, = VPap +1V(2) (Paa—Pus)>
/}aa = —YPaaT i V(t) (pab _'pb(t) ’

oy = =P =1V () (Pap—Psa)s
V = —pE(at origin of rest frame)/#.
(See Lamb (1964 a), (25)—(27) with y, = y, and with 0, = (E,— E,) |A.)

The expectation value of the dipole moment is given by ¢ (p,,+c.c) and the population
difference by p,, —p,,. Rediffcrentiating the equation for p,, and eliminating p,, in terms of
the dipole moment and its first derivative, we immediately find the sum of (7). The difference
of the two equations for g, and g,, gives (9), without the A term. The latter is obtained if we
add a source term to the equation. (See Lamb (1964 5) (45).)

AprPENDIX C. PROPERTIES OF m, AND J,

Let us consider the pair of equations

D,J, /Dt =iwyJ,—yJ,+m,E, (C1)
Dvmv/Dt = _Y(mv~m;0)) ——E‘]Rw (C 2)

PutJ, = Z, cxp{ig,}; Z,, ¢, rcal. We obtain
D,Z,/Dt = —yZ,+m,Ecos 950,1

C3
D,¢,/Dt = w,—m, Esing |Z,. | (G3)

Multiply the Z, equation with Z,, the m, equation with m, and add. One finds
2(D,/D8) (Z3+ml) = —yZi—y(m)—m,mD). (C4)

Average this equation over x and ¢. The derivative vanishes and we are left with the condition

that in a steady state 5 5 -
Y Z2+m2 = niym®. (C5)

(If y is zero Z2+m is a constant of the motion along each stream. Its value is proportional

to the square of the cooperation number introduced by Dicke (1954).)

follows by noticing that the Lh.s. of (C5) is always positive, unless the solution is identically

zero. Property (@) can be shown as follows. First we notice that if m{? is zero, Z,, m, must be

identically zero. Thus the homogeneous equation pair has no solutions. We suppose now that

there are two solutions corresponding to the same m(® and take their difference. This dif-

ference satisfies the homogenous equations pair, hence the difference must be zero.

Let us write the formal solutions of (C 1) and (C 2) as

J,= J‘w drexp {—yr}exp {iw, 7} m, (x—vr,t—17) E(x— o1, t—7), (Ce)
0

m() = m§10)_fw d7 Cxp {_y7}‘]1€v (x——vT’ t_T) E(x—vT’ t_7). (C7)
n
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From (C6) we insert the rcal part of J, in (C2). The resulting integral differential equa-
tion (C8) below requires the symmetry property (e).

om,[ot+v dm,[ox = —y(m,—m?)
—E(x,¢) fw drexp {—y7} (coswyt) m,(x—v7,t—7) E(x—v1,t—7). (C8)
0

Let us assume now that m, is independent of ¢; from (C 6) we find thatJ, must be periodic
in ¢ with period 27/w. If J, has this property, from (C7) we find that m, must have a term
which is independent of ¢, and a term which is periodic in ¢ corresponding to the frequency
20. The time-independent term cannot be zero, since m, is not, by property (¢). The other
time-dependent term has a small coefficient, since upon integration it acquires a small
factor y/w; this leads to property (d). If m, is independent of time, it follows from (C8) that
m, must have the same periodicity as £2which is property ( f). Property (g) follows immedi-
ately from (C6) and the properties of m,.

One considers now the integral-differential equation (C8) for m,. We insert

E = & sin kx cos wt,
average it over time (to obliterate the fast oscillations) and seck the solution of the resulting

equation in the form '
o m,=m®Y C, (v) exp{2inkx}.
n

This leads immediately to the recursion rclations

. 1 1
(2ikn+1) C, =8, —B3 [1 @) 10 T T k@ 1) 10

(Cn_Cn-H\)) (C 9)

where B is a real constant, proportional to &2; « is kv/y, and Q = (0w —w,)[y,A =1, —1. Our
aim is to understand qualitatively the nature of the solutions. It is important to notice that
the coefficients are complex, and decreasing in magnitude as 7 increases, and also as « in-
creases. For this recason we approximate these recursion relations with simpler ones, where
we keep the coefficients complex but independent of 7, though still decreasing functions
of k. In addition, we take Q = 0. This way we worsen the convergence. The new recursion
relations for the new set of complex numbers p, shall be

pn =—4 CXp{—i¢}p,l+A CXp{—iglﬁ}%([),H_l +pn—l) (n > 0)’

Do =1—Qpy+3[Q(p+p1)] (n=0), (C10)
pn=10x
4B 4B
Here A= T ok Q= T

. 1—2ik
exp{—ig} = | o

Put{ = A-'exp {ig}-+1, which gives
2pnc=pn+l+pn—l (ﬂ>0) (Cll)
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This is immediately soluble in a continued fraction expansion,
bn _ 1 1 C12
[ (A R G
20—

Ifwe call the continued fraction r, it satisfies
r=(2—r)" or r.—{+(@-1L

The product of the roots is unity, hence one of the roots will have absolute value less than
unity and this root makes the p, sequence convergent. The successive ratios p,/p,_,, are all
equal. Knowing the ratio py/p,, we can determine p, and p, from the recursion relation for
n = 0. The sequence p, can be represented by a set of vectors in the complex plane in the
following manner. One draws the logarithmic spiral R = pyexp{c~'¢In |r|} where R and
¢ are polar coordinates in the plane; || is the modulus and ¢ the phase of 7,7 = |r| exp{ic}.
The set of p, corresponds to radial arrows radiating from the origin, teminating on the
spiral, their angular separation from each other being all the same and equal to ¢. The ratio
of two successive terms is a decreasing function of «. Since p, changes very little with «, we
see that it is p;, which decreases with «. As for the 4 dependence (intensity dependence) we
find that for large 4’s r approaches unity from below and p, diminishes. Thus the p’s become
more and more equal and smaller in magnitude.

AprPENDIX D. EVALUATION OF THE COMPLEX POLARIZABILITY

We wish to analyse the following integral

J*“’ dzexp {— (2%/y*)}

. 1 1
et (B s )

_ f+°° dzexp{—(zz/ﬂz)}_fi: dzexp{— (2[p*)} F(z),

—w z—a-+1
_ G(2)
C1+G(z)?

where F(z)

1 1
Gz) =B ((z—a)2+1+(z+a)2+ l)’

and where 7, B, and g, are real, and the integration is along the real axis. The first integral
is tabulated. The second integral can be reduced to a sum of similar tabulated integrals. We
write F(z) as a simple fraction. The denominator is a polynomial of fourth degree and has
four roots. Since £ is real and an even function of z the four roots must be arranged as z,
—2zp, zit, —2F, if z ; is one of the roots. Knowing this, one can immediately decompose the
second integrand into partial fractions, which lead to five additional integrals, all of the
same type; one of them is the same as the first integral, except for a different coefficient.
The rest are the complex plasma dispersion integrals, which are tabulated. We have
analysed the motion of the roots in the complex plane as a function of the intensity B and
distance from the line centre a, hoping that their behaviour may indicate certain interesting
regions for these parameters. In particular, for a given distance a from the line centre, there
is an intensity B, = 2a%[1+a~! (1+a?)?] for which the four roots merge into two. Above
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this intensity, all four roots are pure imaginary. One would expect that at this field intensity
something physically interesting may happen; however, this expectation remains to be
gratified.
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